MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0580 MATHEMATICS

0580/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011		21

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case

www without wrong working

Qu.	Answers	Mark	Part Marks
1	7.5(0) cao	2	M1 for $\frac{258.75}{4.6}$
2	5.92×10^{8}	2	M1 figs 592 on answer line or M1 296 \times 10 ⁶ oe in working
3	cos38 sin38 sin158 cos158	2	M1 correct decimals seen 0.3(74) -0.9(271) 0.7(88) 0.6(15)
4	Answer given	3	M1 $\frac{19}{15}$ M1 $\frac{6}{15}$ or $\times \frac{15}{6}$ seen
			$\mathbf{E1} = \frac{19}{6} = 3\frac{1}{6}$
5	(a) 7853 to 7855 or 7850 or 7860 www	2	M1 for $\pi \times 50^2$
	(b) 0.7853 to 0.7855 or 0.785 or 0.786	1ft	Their (a) \div 10 000 evaluated
6	135 cao	3	M1 for 720 or $(6-2) \times 180$ oe seen in working and M1 for equation $180 + 4x =$ their 720 or M1 for $(360 - 180) \div 4 (= 45)$ oe seen in working and M1 dep for 180 – their 45
7	(a) $(y =) 80$	1	
	(b) $(z =) 40$	1	
	(c) $(t=) 10$	1ft	Follow through $90 - \text{their } y \text{ or } 50 - \text{their } z$
8	2.81(25)	3	M1 $V = k/\sqrt{d}$ or M1 $V = \sqrt{(k/d)}$ A1 $k = 4.5$ A1 $k = 20.25$
9	(a) Correct perpendicular bisector with arcs	2	B1 correct line B1 correct construction arcs
	(b) 60°	1	
10	0.38 or $\frac{19}{50}$	4	B1 0.8, 0.6 or 0.55 then M1 0.45 × their 0.6 M1 0.2 × their 0.55 or M2 1 – (0.45 × 0.4 + 0.55 × their 0.8)

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0580	21

11	(a) $\begin{pmatrix} 8 & 5 \\ 20 & 13 \end{pmatrix}$	2	B1 two or three entries correct
	(b) $\begin{pmatrix} 1\frac{1}{2} & -\frac{1}{2} \\ -2 & 1 \end{pmatrix}$ oe	2	$\mathbf{B1}\frac{1}{2}\begin{pmatrix}a&c\\b&d\end{pmatrix}\mathbf{B1}\begin{pmatrix}k\\-4&2\end{pmatrix}$
12	(a) Negative	1	Ignore embellishments
	(b) Correct point	1	
	(c) (i) Accurate ruled line	1	
	(ii) English mark	1ft	Follow through their (c)(i)
13	(a) $\frac{1}{2}a + \frac{1}{2}b$ oe	2	M1 unsimplified or any correct route
			e.g $\mathbf{a} + \frac{1}{2} (\mathbf{b} - \mathbf{a})$ or $\mathbf{OA} + \mathbf{AC}$
	(b) $-1\frac{1}{2}\mathbf{a} + 1\frac{1}{2}\mathbf{b}$ oe	2	M1 unsimplified or any correct route
			e.g. $\mathbf{CD} = 1\frac{1}{2}\mathbf{AB}$ or $\mathbf{b} - \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$
14	(a) 2.84	2	M1 correct substitution of g and l seen
	(b) $\frac{4\pi^2 l}{T^2}$ oe	3	M1 each correct move but third move marked on answer line
15	(a) 156	4	M1 intention to find area under graph B2 completely correct area statement or B1 two areas found correctly (or one trapezium area)
	(b) 12	1ft	Their (a)/13
16	(a) 3.61	3	M1 $(3-1)^2 + (0-3)^2$ oe M1 $\sqrt{2^2 + 3^2}$
	(b) $y = \frac{1}{2}x + 2\frac{1}{2}$ oe	3	B2 $y = \frac{1}{2}x + k$ or $y = kx + 2\frac{1}{2}$
			or B1 $kx + 2\frac{1}{2}$ or $\frac{1}{2}x + k$
			If 0 scored B1 $m = \frac{1}{2}$
			B1 $c = 2\frac{1}{2}$ clearly identified in working

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0580	21

17	(a) $\frac{1}{2}$	2	B1 f(-2) seen
	(b) $\sqrt[3]{(x-1)}$ or $\sqrt[3]{x-1}$	2	M1 $x - 1 = y^3$ or $\sqrt[3]{(y-1)}$
	(c) 1 2	3	M2 $(x-1)(x-2) = 0$ or M1 $(x + a)(x + b) = 0$ where ab = 2 or $a + b = -3If 0 scored give M1 for x^2 - 3x + 2 = 0$
18	(a) 4324 cao	2	$\mathbf{M1} \frac{1}{6} \times 23 \times 24 \times 47$ or better
	(b) (i) 4, 9	2	B1 either correct
	(ii) $(n+1)^2$ or $n^2 + 2n + 1$	1	
	(c) $\frac{2}{3}n(n+1)(2n+1)$ oe	2	M1 recognising $V_n = 4T_n$